Emerging view of omics complexity

Plant Metabolomics

Proteome An undiscovered country

Transcriptome
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Why a metabolomics approach
could make sense for TACF



Integrated workflow for breeding for biotic agent resistance

TREE/HOST BIOTIC AGENT
TM/R oM TM oM ™ oM TM/R

Phenotypic selection Propagate candidates Identification of Recognition of signs
in field agent species and symptoms

OM TCTC

Screen for/introduce resistance

Propagate best Identification of
resistant progeny biotypes, races

Forest and Ecosystem Health Molecular Plant-Agent Interactions

Epidemiology of  Effector richness and Agent adaption
incidence and severity interactions to new hosts

TM = Traditional methods R = Robotics OM = Omics TCTC = Tissue culture, transformation, CRISPR

Original concept for figure from

Kerig, S., H. A. Daniels, M. Gdmez-Gallego, J. F. Tabima, R. R. Lenz, K. L. Sgndreli, N. J. Griinwald, N. Williams, R. McDougal and J. M. LeBoldus (2019).
"Fromﬁcfgﬁ%eos to forest management — tackling invasive Phytophthora species in the era of genomics." Canadian Journal of Plant Pathology: 1-29.
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Integrated workflow for breeding for biotic agent resistance

BIOTIC AGENT

™ oM

Identification of
agent species

OM TCTC

oM

Propagate candidates

Phenotypic selection
in field

TM/R

Screen for/introduce resistance

Propagate best Identification of
resistant progeny biotypes, races

Forest and Ecosystem Health Molecular Plant-Agent Interactions

Epidemiology of  Effector richness and Agent adaption
incidence and severity interactions to new hosts

What part of this workflow is the primary goal of the TACF ?
Where is Omics best applied?

9/10/2020



The most cost-effective Omics tools

e Phenomics

e Omics as near as possible to direct measure

— Metabolomics

Plant metabolome

Proteome

Transcriptome

Genome
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Plant secondary metabolites

* Uses
o Defense
o Signaling
 Target specificity
o Broad to very narrow
* Host intrinsic genetic capacity

o Extreme variation
= Species
» |Individuals within species
= Tissue types within individuals
= Developmental state within tissue types

* Environment strongly influences
realized host capacity



In which Camptotheca acuminata tissues is camptothecin found?

Identified metabolite: Camptothecin
Unidentified metabolite: MDC-Cam-HPLC-E-POS-F1-349.116-
14.03&nbsp;[M+H]+
Species: Camptotheca acuminata
Experiment: MPC (group 1)

Platform: Camptotheca acuminata - LC/TOF MS Positive lon .
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Biosynthesis of plant secondary metabolites
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Separating the secondary metabolites in a plant tissue

Different molecules
exit at different times

Liquid chromatography

Samples
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Molecules
are ionized

lons are detected and
masses are measured

Specialized equipment

Mostly automated once the
tissue is extracted

Specialized software
Analytical chemists

Statistician
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Camptotheca acuminata

How many metabolite peaks do you see?

Sample #21
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LC/MS profile magnified 10 X

Now, how many metabolites do you think are present?

Sample #21
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Untargeted metabolomics workflows

Have you defined the scientific question?

Can you answer the scientific question with the host material available?
Have you done preliminary studies?

Do you have direct access to the biological samples at the right time?
Do you know what the right time is?

Have you decided or do you know about storage, extraction, and
metabolite stability?

o No single solvent will dissolve all metabolites
Choose analytical method
Choose analytical data collection method

Understand the basics of the data processing and statistical analysis
* Do you understand what you are seeing?

Search Databases to see if your compounds match anything known
* Match not required for usefulness

Validation of results

' > Credible biological interpretation
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How to make metabolomics work for you
Breeding for stress resistance and/or host-pathogen interaction

1) Understand the sources of phenotypic variation and design to
detect or avoid sources of variation from the start.

2) Know what your goal is and stick to it

A. Host plant breeding program: Development of American chestnut or its
ecological equivalent with enough resistance to ink disease and chestnut
blight and enough genetic diversity to maintain self-sustaining populations.

B. Genetic mechanisms: Elucidation of the precise genetic mechanisms of
host-pathogen interactions so that we can use transformation to insert a
corrective gene or CRISPR technology to edit the genome.

13



A real example of the use of metabolomics with a type A goal

e Goal

o Primary: Development of green ash with enough resistance to EAB and
enough genetic diversity to maintain self-sustaining populations.

o Secondary: Development of a field test kit that will reveal the presence of
metabolites diagnostic for high larval kill

* Progress towards goal*

o Primary: we have full sib progeny with larval kill as good as Manchurian ash
(based on EAB egg bioassays)

o Secondary: we have a set metabolites that correctly identify 70-80% of the
trees with high larval kill, 70% of the low larval kill trees and incorrectly

identify none. $$$$S

* Requires confirmation in replicated studies across years, work is in progress

14



A reality check

EAB resistance breeding in green ash: 18 years from detection in Detroit, 2002

Year 5-present :identify lingering ash in monitored forest plots first monitoring plots
established in 2004, first data collected 2005, first lingering ash propagated in 2008-9 — so if
you want to use 2008 that would be year 6.

Year 7-13 : develop and refine reproducible EAB infestation and stem dissection procedures
Year 6 to present: produce grafted clonal replicates of lingering ash for replicated tests
Year 8 to present: make crosses between the best lingering ash parents

Year 14 to present: phenotype full sib families large enough for power of test and seek
funding for Omics

Years 14-18: Do the transcriptome and metabolome of full sib families and their parents, of
the right tissue (inner bark, both cambiums, sapwood) taken at the right time (8 weeks after
infestation) at the right age......work in process

Years 18 and on: test the predictive values of the group of metabolites identified and if
confirmed, develop a diagnostic test for high larval kill in trees artificially infested and those

under attack in naturally regenerated stands....... work in process
15



EAB resistance breeding team

Multiple disciplines, multiple institutions
Long term commitment

University of Notre Dame

Jeanne Romero-Severson, PhD.
Quantitative genetics and
genomics

Robert K. Stanley, Michigan State

PhD candidate
Analytical chemistry,
Metabolomics

A. Daniel Jones, PhD.
@ Biochemistry, analytical
# chemistry, metabolomics

Funding agencies

United States Department of Agriculture
Forest Service

USDA United States Department of Agriculture
@l Animal and Plant Health Inspection Service

Lead Institution
US Forest Service
Northern Research Station

At Delaware, OH

Jennifer Koch, PhD.
Resistance breeding,
Species restoration

Kathleen Knight, PhD.
Restoration ecology,
invasive pests and
diseases

At East Lansing, Ml

Therese Poland, PhD.
Forest entomology
East Lansing, Ml

The Pennsylvania Department of Conservation and Natural Resources
[

m) The Chemistry-Biochemistry-Biology Interface (CBBI) Program at
Notre Dame NIH training grant
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TACF use of omics
Both Type A and Type B goals

A. Development of American chestnut or its ecological equivalent
with enough resistance to ink disease and chestnut blight and
enough genetic diversity to maintain self-sustaining populations.

B. Elucidation of the precise genetic mechanisms of host-pathogen
interactions so that we can use transformation to insert a
corrective gene or CRISPR technology to edit the genome.

TREE BIOTIC AGENT
\

Ml Phenotypic selection Propagate candidates Identification of
in field Sibling families  Clonal agent species

Screen for/introduce resistance

Propagate best Identification of
resistant progeny biotypes, races

Forest and Ecosystem Health Molecular Plant-Agent Interactions

Self-sustaining durably Recovery of genetic Epidemiology of  Effector richness and Agent adaption
resistant populations diversity incidence and severity interactions to new hosts
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Best practices for the development and deployment of
improved pest and pathogen defenses in forest trees

e Professional guidance

— Plant breeding, Quantitative genetics, Statistics and
experimental design, Silviculture, Quality control,
Analytical chemistry, Bioinformatics, Other Omics
expertize, Project management

e Clear goals, regularly reviewed

e Long term commitment

9/10/2020 18
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Useful resources

Metabolomics Association of North
America

https://metabolomicsna.org

Metabolomics Society
http://metabolomicssociety.org/

19



	Slide Number 1
	or
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	In which Camptotheca acuminata tissues is camptothecin found?
	Slide Number 8
	Separating the secondary metabolites in a plant tissue
	Camptotheca acuminata
	LC/MS profile magnified 10 X
	Untargeted metabolomics workflows
	How to make metabolomics work for you�Breeding for stress resistance and/or host-pathogen interaction
	A real example of the use of metabolomics with a type A goal�
	A reality check
	EAB resistance breeding team
	TACF use of omics�Both Type A and Type B goals
	Slide Number 18
	Useful resources

